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Abstract. Empirical distributional methods account for the meaning of
syntactic structures by combining words according to algebraic operators
(e.g. tensor product) acting over the corresponding lexical constituents.
In this paper, a novel approach for semantic composition based on space
projection techniques over the basic geometric lexical representations is
proposed. In line with Frege’s context principle, the meaning of a phrase
is modeled in terms of the subset of properties shared by the co-occurring
words. In the geometric perspective here pursued, syntactic bi-grams are
projected in the so called Support Subspace, aimed at emphasizing the
semantic features shared by the compound words and better capturing
phrase-specific aspects of the involved lexical meanings. State-of-the-art
results are achieved in a well known phrase similarity task, used as a
benchmark for this class of methods.

1 Introduction

While compositional approaches to language understanding have been largely
adopted, semantic tasks are still challenging for research in Natural Language
Processing. Traditional logic-based approaches (as the Montague’s approach in
[1] and [2]) rely on Frege’s principle for which the meaning of a sentence is a
function of the meanings of its parts [3]. The resulting theory allows an algebra
on the discrete propositional symbols to represent the meaning of arbitrarily
complex expressions.
More recently, distributional models of lexical semantics have been proposed
(e.g. Firth [4] or Schuetze [5]) based on Wittgenstein’s later philosophy, whereby
the lexical meanings is determined by their context of use [6]. This seems to be
a completely orthogonal view on meaning representation with respect to logical
models.

Computational models of semantics based on symbolic logic representa-
tions can account naturally for the meaning of sentences, through the notion
of compositionality for which the meaning of complex expressions can be deter-
mined by using the meanings of their constituent and the rules to combine them.
Despite the fact that they are formally well defined, logic-based approaches have



limitations in the treatment of ambiguity, vagueness and cognitive aspects in-
trinsically connected to natural language. For instance, the sentence Meanwhile,
the bank closed could either refer to the closing time of an office, or to the ”cease
to operate” sense of a bankrupt. Logic-based approaches present strict limita-
tion towards these tasks and bring often inadequate tool to model and overcome
the uncertainty of phenomena like select the proper interpretation of a specific
verb-object pair.

Distributional models early introduced by Schütze [7] and recently sur-
veyed in [8] rely on the Word Space model, inspired by Information Retrieval.
They manage semantic uncertainty through mathematical functions grounded
in probability or vector spaces. Points in the space represent semantic concepts,
such as words, and can be learned from corpora, in such a way that similar, or
related, concepts are near to one another in the space. The distance between
two points (via angular or Euclidean metrics) represents semantic dissimilar-
ity between concepts. Methods for constructing representations for phrases or
sentences through vector composition has recently received a wide attention in
literature (e.g. [9]). However, vector-based models typically represent isolated
words and ignore grammatical structure [8]. They have thus a limited capability
to model compositional operations over phrases and sentences.

In order to overcome these limitations a so-called compositional distribu-
tional semantics (DCS) model is needed and its development is still object of
on-going and controversial research (e.g. [10], [11]) A compositional model based
on distributional analysis should provide semantic information consistent with
the meaning assignment typical of human subjects. For example, it should sup-
port synonymy and similarity judgments on phrases, rather than only on single
words. The objective should be a measure of similarity between quasi-synonymic
complex expressions, such as ”... buy a car ...” vs. ”... purchase an automobile
...”. Another typical benefit should be a computational model for entailment,
so that the representation for ” ... buying something ...” should be implied by
the expression ”... buying a car ...” but not by ”... buying time ...”. Distribu-
tional compositional semantics (DCS) needs thus a method to define: (1) a way
to represent lexical vectors u and v, for words u, v dependent on the phrase
(r, u, v) (where r is a syntactic relation, such as verb-object), and (2) a metric
for comparing different phrases according to the selected representations u, v.

Existing models are still controversial and provide general algebraic operators
(such as tensor products) over lexical vectors. By focusing on the geometry of
latent semantic spaces a novel distributional model for semantic composition is
proposed . The aim is to model semantics of syntactic bigrams as projections in
lexically-driven subspaces. Distances in such subspaces (called Support Spaces)
emphasize the role of common features that constraint in ”parallel” the interpre-
tation the involved lexical meanings and better capture phrase-specific aspects.
While Section 2 discusses existing methods of compositional distributional se-
mantics, Section 3 presents our model based on support spaces. Experiments in
Section 4 are used to show the beneficial impact of the proposed model.



2 Related work

While compositional semantics allows to govern the recursive interpretation of
sentences or phrases, vector space models (as in IR [12]) and, mostly, semantic
space models, such as LSA ([13, 14]), represent lexical information in metric
spaces where individual words are represented according to the distributional
analysis of their co-occurrences over a large corpus.

Distributional models are based on the theory that words occurring within
similar contexts are semantically similar (Harris in [15]). Words are represented
as vectors and their meaning is distributed across many dimensions. Word mean-
ing is obtained empirically by examining the contexts in which a word appears.
The meaning of a word w corresponds strictly to the distributional context in
which w occurs, i.e. depends on the contexts distribution it shares with other
words. Vector components reflect the corresponding contexts so that two words
close in the space are systematically found in similar contexts. This suggests
that they are related by some type of generic semantic relation, either paradig-
matic (e.g. synonymy, hyperonymy, antonymy) or syntagmatic (e.g. meronymy,
conceptual and phrasal association), as observed in Sahlgren [16].

Semantic spaces have been widely used for representing the meaning of words
or other lexical entities (e.g. [8]), with successful applications in lexical disam-
biguation ([5]) or harvesting thesauri (as in Lin [17]). In this work we will refer
to the so-called word-based spaces, in which target words are represented by
gathering probabilistic information of their co-occurences calculated in a fixed
range window over all sentences. In such that models vectors components corre-
spond to the entries f of the vocabulary V (i.e. to features that are individual
words). In some works (e.g. [9]) pure co-occurrence counts are adopted as weights
for individual features fi, where i = 1, ..., N and N = |V |; in other works (e.g.
[18]), weights are the pointwise mutual information scores between the target
word w and the captured co-occurences in the window,

pmi(w, i) = log2
p(w, fi)

p(w) · p(fi)
i = 1, ..., N

A vector w = (pmi1, ..., pmiN ) for a word w is thus built over all the words fi
belonging to the dictionary. When w and f never co-occur in any window their
pmi is by default set to 0. Weights of vector components depend on the size of
the co-occurrence window and express the global statistics in the entire corpus.
Larger values of the adopted window size aim to capture topical similarity (as
in the document based models of IR), while smaller sizes (usually between the
±1-3 surrounding words) lead to representation better suited for paradigmatic
similarities between word vectors w. Cosine similarity between vectors w1 and
w2 is modeled as the normalized scalar product, i.e.

〈w1,w2〉
‖w1‖ ‖w2‖

that expresses topical or paradigmatic similarity according to the different rep-
resentations (e.g. window sizes). Notice that dimensionality reduction methods,



such as LSA [13, 14] are also applied in some studies, to capture second order
dependencies between features f , i.e. applying semantic smoothing to possibly
sparse input data. Applications of an LSA-based representation to Frame Induc-
tion or Semantic Role Labeling are presented in ([19]) and ([20]), respectively.

The main drawback of the above models is their non-compositional nature:
they ignore the grammatical structure underlying phrases, such as ”... buy a
car ...” that are thus not clearly connected to the base vectors wbuy and wcar.
Distributional methods hence can not compute the meanings of phrases (and
sentences) as efficiently as they do indeed over words.

2.1 Distributional Compositional Semantic Models

Distributional methods have been thus recently extended to better account com-
positionality, in the so called distributional compositional semantics (DCS) ap-
proaches. Mitchell and Lapata in [9] follow Foltz [21] and assume that the con-
tribution of syntactic structure can be ignored, while the meaning of a phrase
is simply the commutative sum of the meanings of its constituent words. More
formally, [9] defines the composition p◦ = u ◦ v of vectors u and v through an
additive class of composition functions expressed by:

p+ = u + v (1)

This perspective clearly leads to a variety of efficient yet shallow models of
compositional semantics compared in [9]. For example pointwise multiplication
is defined by the multiplicative function:

p· = u� v (2)

where the symbol � represents multiplication of the corresponding components,
i.e. pi = ui · vi. Since the cosine similarity function is insensitive to the vectors
magnitude, in [9] a more complex asymmetric type of function called dilation
is introduced. It consists in multiplying vectors v by the quadratic factor u · u
and v by a stretching factor λ as follows: pd = (u ·u)v + (λ− 1)(u · v)u Notice
that either u can be used to dilate v, or v can be used to dilate u. The best
dilation factor λ for the dilation models is studied and tuned in [9]. Dilation and
point-wise multiplication seem to best correspond with the intended effects of
syntactic interaction, as experiments in [9] demonstrate.

In [22], the concept of a structured vector space is introduced, where each word
is associated to a set of vectors corresponding to different syntactic dependencies.
Every word is thus expressed by a tensor, and tensor operations are imposed.

The main differences among these studies lies in (1) the lexical vector repre-
sentation selected (e.g. some authors do not even commit to any representation,
but generically refer to any lexical vector, as in [11]) as well as in (2) the adopted
compositional algebra, i.e. the system of operators defined over such vectors. In
most work, operators do not depend on the involved lexical items, but a general
purpose algebra is adopted. Since compositional structures are highly lexical-
ized, and the same syntactic relation gives rise to very different operators with



respect to the different involved words, a proposal that makes the composition-
ality operators dependent on individual lexical vectors is hereafter discussed.

3 A quantitative model for compositionality

Let’s start to discuss the above compositional model over an example, where we
want to model the semantic analogies and differences between ”... buy a car ...”
and ”... buy time ...”. The involved lexicals are buy, car and time, while their
corresponding vector representation will be denoted by wbuy wcar and wtime.
The major result of most studies on DCS is the definition of the function ◦ that
associates to wbuy and wcar a new vector wbuy car = wbuy ◦wcar.

We consider this approach misleading since vector components in the word
space are tied to the syntactic nature of the composed words and the new vector
wbuy car should not have the same type of the original vectors. Mathematical
operations between the two input vectors (e.g. point wise multiplication � as in
Eq. 2) produce a vector for a structure (i.e. a new type) that possess the same
topological nature of the original vectors. As these latter are dedicated to express
arguments, i.e. a verb and its object in the initial space, the syntactic informa-
tion (e.g. the relation and the involved POS) carried independently by them is
neglected in the result. For example, the structure ”... buy a car ...” combines
syntactic roles that are different and the antisymmetric relationship between the
head verb and the modifier noun is relevant. The vectorial composition between
wbuy and wcar, as proposed in Eq. 2 [23], even if mathematically correct, results
in a vector wbuy car that does not exploit this syntactic constraint and may fail
to express the underlying specific semantics.

Notice also that the components of wbuy and wcar express all their contexts,
i.e. interpretations, and thus senses, of buy and car in the corpus. Some mathe-
matical operations, e.g. the tensor product between these vectors, are thus open
to misleading contributions, brought by not-null feature scores of buyi vs. carj
(i 6= j) that may correspond to senses of buy and car that are not related to the
specific phrase ”buy a car”.

On the contrary, in a composition, such as the verb-object pair (buy, car),
the word car influences the interpretation of the verb buy and viceversa. The
model here proposed is based on the assumption that this influence can be
expressed via the operation of projection into a subspace, i.e. a subset of original
features fi. A projection is a mapping (a selection function) over the set of all
features. A subspace local to the (buy, car) phrase can be found such that only
the features specific to its meaning are selected. It seems a necessary condition
that any correct interpretation of the phrase has to be retrieved and represented
on the subspace of the properties shared by the proper sense of individual co-
occurring words. In order to separate these word senses and neglect irrelevant
ones, a projection functionΠ must identify these common semantic features. The
resulting subspace has to preserve the compositional semantics of the phrase and
it is called support subspace of the underlying word pair.



Consider the bigram composed by the words buy and car and their vectorial
representation in a co-occurrence N−dimensional Word Space. Notice that dif-
ferent vectors are usually derived for different POS tags, so that the verbal and
nominal use of buy are expressed by two different vectors, i.e. buy.V and buy.N.
Every component of the vectors in a word space expresses the co-occurrence
strength (in terms of frequency or pmi) of buy.V with respect to one feature,
i.e. a co-occurring POS tagged word such as cost.N, pay.V or cheaply.Adv. The
support space selects the most important features for both words, e.g. buy.V and
car.N. Notice that this captures the conjunctive nature of the scalar product
to which contributions come from feature with non zero scores in both vectors.
Moreover, the feature score is a weight, i.e. a function of the relevance of a feature
for the represented word.

As an example, let us consider the phrase Buy-Car Buy-Time

cheap::Adj consume::V
insurance::N enough::Adj

rent::V waste::V
lease::V save::In
dealer::N permit::N

motorcycle::N stressful::Adj
hire::V spare::Adj
auto::N save::V

california::Adj warner::N
tesco::N expensive::Adj

Table 1. Features correspond-
ing to dimensions in the k=10
dimensional support space of
bigrams buy car and buy time

”. . . buy time . . . ”. Although the verb buy is the
same of ”. . . buy a car . . . ”, its meaning (i.e. to
do something in order to achieve more time) is
clearly different. Since vector wbuy expresses at
least both possible meanings of the verb buy,
different subspaces must be evoked in a distri-
butional model for buy car vs. buy time.

Ranking features from the most important
to the least important for a given phrase (i.e.
pair u and v) can be done by sorting in decreas-
ing order the components pi = ui · vi, i.e. the
addends in the scalar product. This leads to the
following useful:

Definition (k-dimensional support space). A k−dimensional support sub-
space for a word pair (u, v) (with k � N) is the subspace spanned by the subset
of n ≤ k indexes Ik(u,v) = {i1, ..., in} for which

∑n
t=1 uit · vit is maximal. We

will hereafter denote the set of indexes characterizing the support subspace of
order k as Ik(u,v).
Table 1 reports the k = 10 features with the highest contributions of the point
wise product of the pairs (buy,car) and (buy,time). It is clear that the two pairs
give rise to different support subspaces: the main components related with buy
car refer mostly to the automobile commerce area unlike the ones related with
buy time mostly referring to the time wasting or saving.

Similarity judgments about a pair can be thus computed within its support
subspace. Given two pairs the similarity between syntactic equivalent words (e.g.
nouns with nouns, verbs with verbs) is measured in the support subspace derived
by applying a specific projection function. In the above example, the meaning
representation of buy and car is obtained by projecting both vectors in their
own subspace in order to capture the (possibly multiple) senses supported by
the pair. Then, compositional similarity between buy car and the latter pairs
(e.g. buy time) is estimated by (1) immersing wbuy and wtime in the selected
”. . . buy car . . . ” support subspace and (2) estimating similarity between cor-



responding arguments of the pairs locally in that subspace. As exemplified in
Table 1, two pairs give rise to two different support spaces, so that there are
two ways of projecting the two pairs. In order to provide precise definitions for
these notions, formal definitions will be hereafter provided through linear algebra
operators.

Space projections and compositionality. Support spaces (of dimension
k) are isomorphic to projections in the original space. A projection Πk(u, v) can
be used and provides a computationally simple model for expressing the intrinsic
meaning of any underlying phrase (u, v). Given a pair (u, v), a unique matrix
Mk

uv = (mk
uv)ij is defined for a given projection Πk(u, v) into the k-dimensional

support space of any pair (u, v) according to the following definition:

(mk
uv)ij =

{
1 iff i = j ∈ Ik(u,v)

0 otherwise.
(3)

The vector ũ projected in the support subspace can be thus estimated through
the following matrix operation:

ũ = Πk(u, v) ũ = Mk
uvu (4)

A special case of the projection matrix is given when no k limitation is
imposed to the dimension and all the positive addends in the scalar product are
taken. This maximal support subspace, denoted by removing the superscript k,
i.e. as Muv = (muv)ij , is defined as follows:

(muv)ij =

{
0 iff i 6= j or ui · vi ≤ 0,

1 otherwise.
(5)

From Eq. 5 it follows that the support subspace components are those with
positive product.

Definition. (Left and Right Projections). Two phrases (u, v) and (u′, v′) give
rise to two different projections, defined as follows

(Left projection) Πk
1 = Πk(u,v) (Right projection) Πk

2 = Πk(u
′
,v

′
) (6)

We will denote the two projection matrices as Mk
1 and Mk

2 , correspondingly. In
order to achieve a unique symmetric projection Πk

12, it is possible to define the
corresponding combined matrix Mk

12 as follows:

Mk
12 = (Mk

1 + Mk
2)− (Mk

1Mk
2) (7)

where the mutual components that satisfy Eq. 3 (or Eq 5) are employed as Mk
12

(or M12 respectively).

Compositional Similarity Judgments. The projection function that lo-
cates the support subspace of a word pair (v, o), whose syntactic type is verb-
object, i.e. VO, will be hereafter denoted by Πvo(v,o). Given two word pairs



p1 = (v, o) and p2 = (v′, o′), we define here a compositional similarity function
Φ(p1, p2) as a model of the similarity between the underlying phrases. As the
support subspace for the pair p1 is defined by the projection Π1, it is possible
to immerse the latter pair p2 by applying Eq. 4. This results in the two vec-
tors M1v

′
and the M1o

′
. It follows that a compositional similarity judgment

between two verbal phrase over the left support subspace can be expressed as:

Φ(◦)
p1

(p1, p2) = Φ
(◦)
1 (p1, p2) =

〈Mk
1v,M

k
1v

′〉∥∥Mk
1v
∥∥∥∥Mk

1v′
∥∥ ◦ 〈Mk

1o,M
k
1o

′〉∥∥Mk
1o
∥∥∥∥Mk

1o
′
∥∥ (8)

where first cosine similarity between syntactically correlated vectors in the se-
lected support subspaces are computed and then a composition function ◦, such
as the sum or the product, is applied . Notice how the compositional function
over the right support subspace evoked by the pair p2 can be correspondingly

denoted by Φ
(◦)
2 (p1, p2). A symmetric composition function can thus be obtained

as a combination of Φ
(◦)
1 (p1, p2) and Φ

(◦)
2 (p1, p2) as:

Φ
(�)
12 (p1, p2) = Φ

(◦)
1 (p1, p2) � Φ(◦)

2 (p1, p2) (9)

where the composition function � (again the sum or the product) between the
similarities over the left and right support subspaces is applied. Notice how the
left and right composition operators (◦) may differ from the overall composition
operator �, as we will see in experiments. The above definitions in fact charac-

terize several projection functions Πk, local composition function Φ
(◦)
1 as well

as global composition function Φ
(�)
12 . It is thus possible to define variants of the

models presented above according to four main parameters:

Support Selection. Two different projection functions Π have been defined in
Eq. 3 and Eq. 5, respectively. The Maximal support Π denotes the support
space defined in Eq. 5. The k-dimensional support defined in Eq. 3 is always
denoted by the superscript k in Πk instead.
Symmetry of the similarity judgment. A symmetric judgment (denoted
by simple Φ12) involves Eq. 9 in which compositionality depends on both left
and right support subspaces. In an asymmetric projection the support subspace
belonging to a single (left Φ1, or right Φ2) pair is chosen. In all the experiments
we applied Eq. 8, by only considering the left support subspace, i.e. Φ1.
Symmetry of the support subspace. A support subspace can be build as:

◦ an independent space, where different, i.e. left and right, support sub-
spaces are built, through different projection functions M1 and M2 inde-
pendently

◦ a unified space, where a common subspace is built according to Eq. 7, and
denoted by the projection matrix M12

Composition function. The composition function Φ◦ in Eq. 8 and 9 can be
the product or the sum as well. We will denote Φ+

i or Φ·i as well as Φ+ and Φ· to
emphasize the use of sum or product in Eq. 8 and 9. The only case in which no



combination is needed is when the unified support space (as in Eq. 7) is used,
and thus no left or right Πi is applied, but just Π12.

4 Experimental Evaluation

The aim of this evaluation is to estimate if the proposed class of projection
based methods for distributional compositional semantics is effective in captur-
ing similarity judgments over phrases and syntactic structures. We tested our
method over binary phrase structures represented by verb-object, noun-noun
ad adjective-noun. Evaluation is carried out over the dataset proposed by [23],
which is part of the GEMS 2011 Shared Evaluation. It consists of a list of 5,833
adjective-noun (AdjN), verb-object (VO) or noun-noun (NN) pairs, rated with
scores ranging from 1 to 7. In Table 2, examples of pairs and scores are shown:
notice how the similarity between the (VO) offer support and provide help is
higher than the one between achieve end and close eye. The correlation of the
similarity judgements output by a DCS model against the human judgements is
computed using Spearman’s ρ, a non-parametric measure of statistical depen-
dence between two variables proposed by [9].

We employed two differentType First Pair Second Pair Rate

VO

support offer provide help 7
use knowledge exercise influence 5
achieve end close eye 1

AdjN

old person right hand 1
vast amount large quantity 7

economic problem practical difficulty 3

NN

tax charge interest rate 7
tax credit wage increase 5

bedroom window education officer 1

Table 2. Example of Mitchell and Lapata dataset
for the three syntactic relations verb-object (VO),
adjective-noun (AdjN) and noun-noun (NN)

word spaces derived from a cor-
pus, i.e. ukWak [24], including
about 2 billion tokens. Each space
construction proceeds from an
adjacency matrix M on which
Singular Values decomposition
([13]) is then applied. Part-of-
speech tagged words have been
collected from the corpus to re-
duce data sparseness. Then all
target words tws occurring more
than 200 times are selected, i.e.
more that 50,000 candidate fea-

tures. A first space, called sentence-based space, is derived by applying SVD to a
M=term×sentence adjacency matrix. Each column of M represents thus a sen-
tence of the corpus, with about 1,500,000 sentences and tf-idf scores for words w
in each row. The dimensions of the resulting SVD matrix in the sentence-based
space is N = 250.

The second space employed is a word space built from the ukWak co-occurrences
where left contexts are treated differently from the right ones for each target
word tw. Each column in M represents here a word w in the corpus and in
rows we found the pmi values for the individual features fi, as captured in a
window of size ±3 around w. The most frequent 20,000 left and right features fi
are selected, so that M expresses 40,000 contexts. SVD is here applied to limit
dimensionality to N = 100.



Comparative analysis with results previously published in [23] has been car-
ried out. We also recomputed the performance measures of operators in [23] (e.g.
M&L multiplicative or additive models of Eq. 1 and 2) over all the word spaces
specifically employed in the rest of our experiments.

Table 3 reports M&L performances in first three rows. In the last row of the
Table the max and the average interannotator agreement scores for the three
categories derived through a leave one-out resampling method, are shown. For
each category with a set of subjects responses of size m, a set of m − 1 (i.e.,
the response data of all but one subject) and a set of size one (i.e., the response
data of the single remaining subject) are derived. The average rating of the set
of m−1 subjects is first calculated and then Spearman’s ρ correlation coefficient
with respect to the singleton set is computed. Repeating this process m times
results in an average and maximum score among the results (as reported in row
6). The distributional compositional models discussed in this paper are shown
in rows 4 and 5, where different configurations are used according to the models

described in Section 3. For example, the system denoted in Table 3 as Φ
(+)
12 ,

Φ
(+)
i , Πk

i (k=40), corresponds to an additive symmetric composition function

Φ
(+)
12 (as for Eq. 9) based on left and right additive compositions Φ

(+)
i (i = 1, 2

as in Eq. 8), derived through a projection Πk
i in the support space limited to

the first k = 40 components for each pair (as for Eq. 6).

First, Mitchell and Lapata operators applied onto our sentence and word
space models over perform results previously presented in [23] (i.e. row 2 and
3 vs. row 1). This is mainly due to the benefits of the SVD modeling adopted
here. The use of pmi scores in word spaces or tf-idf values in sentence spaces,
then subject to the SVD factorization, is beneficial for the multiplicative and
additive models proposed in the past.

The best performances are achieved by the projection based operators pro-
posed in this paper. The word space version (denoted by Φ(+), Πk

12 (k=30)) gets
the best performance over two out of three syntactic patterns (i.e. AdjN and
NN) and is close to the best figures for VO. Notice how parameters of the pro-
jection operations influence the performance, so that different settings provide
quite different results. This is in agreement with the expected property for which
different syntactic compositions require different vector operations.

If compared to the sentence space, a word space, based on a small window
size, seems better capture the lexical meaning useful for modeling the syntactic
composition of a pair. The subset of features, as derived through SVD, in a
resulting support space is very effective as it is in good agreement with human
judgements (ρ=0.71) A sentence space leads in general to a more topically-
oriented lexical representations and this seems slightly less effective. In synthesis
it seems that specific support subspaces are needed: a unified additive model
based on a Word Space is better for adjective-noun and compound nouns while
the additive symmetric model based on a sentence space is much better for
verb-object pairs.

A general property is that the results of our models are close to the average
agreement among human subjects, this latter representing a sort of upper bound



for the underlying task. It seems that latent topics (as extracted through SVD
from sentence and word spaces) as well the projections operators defined by sup-
port subspaces provide a suitable comprehensive paradigm for compositionality.
They seem to capture compositional similarity judgements that are significantly
close to human ones.

5 Conclusions

In this paper, a distributional compositional semantic model based on space
projection guided by syntagmatically related lexical pairs is defined. Syntactic
bi-grams are here projected in the so called Support Subspace and compositional
similarity scores are correspondingly derived. This represents a novel perspective
on compositional models over vector representations with respect to shallow
vector operators (e.g. additive, or multiplicative, tensorial algebraic operations)
as proposed elsewhere, e.g. in [23]. The approach presented here focuses on first
selecting the most important components for a specific word pair in a relation and
then modeling their similarity. This captures their meanings locally relevant to
the specific context evoked by the pair. The proposed projection-based method of

Model AdjN NN VO

Mitchell&Lapata, [23]
Additive .36 .39 .30
Multiplicative .46 .49 .37
Dilation .44 .41 .38

Mitchell&Lapata Topical SVD
Additive .53 .67 .63
Multiplicative .29 .35 .40
Dilation .44 .49 .50

Mitchell&Lapata Word Space SVD
Additive .69 .70 .64
Multiplicative .38 .43 .42
Dilation .60 .57 .61

Sentence Space
Φ

(+)
1 , Πk

1 (k=20) .58 .62 .64

Φ
(+)
12 , Φ

(+)
i , Πk

i (k=40) .55 .71 .65

Φ
(+)
12 , Φ

(+)
i , Πk

i (k=10) .49 .65 .66

Word Space
Φ(+), Πk

12 (k=30) .70 .71 .63

Φ
(·)
12 , Φ

(+)
i , Πk

i (k=40) .68 .68 .64

Φ
(·)
12 , Φ

(·)
i , Πi .70 .65 .61

Agreement among Human Subjects
Max .88 .92 .88
Avg .72 .72 .71

Table 3. Spearman’s ρ correlation coefficients across Mitchell and Lapata models and
the projection-based models proposed in Section 3. Topical Space and Word space refer
to the source spaces. is used as input to the LSA decomposition model.

DCS, evaluated over a well known dataset ([23]), is very effective for the syntactic
structures of VO, NN and AdjN. It achieves the same results than the average
human interannotator agreement, by outperforming most previous results ([23]).
Future work on other compositional prediction tasks (e.g. selectional preference
modeling or the ranking of short texts) and over different datasets will be carried
out to better assess and generalize the presented results.
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